Mussel-inspired approach to constructing robust cobalt-embedded N-doped carbon nanosheet toward enhanced sulphate radical-based oxidation

نویسندگان

  • Tao Zeng
  • Haiyan Zhang
  • Zhiqiao He
  • Jianmeng Chen
  • Shuang Song
چکیده

Heterogeneous sulphate radical based advanced oxidation processes (SR-AOPs) have lately been raised as a promising candidate for water treatment. Despite the progress made, either the stability or the performance of the current catalysts is still far from satisfactory for practical applications. Herein, using polydopamine-cobalt ion complex that inspired by mussel proteins as medium, we facilely fabricate a robust SR-AOPs catalyst with cobalt nanoparticles (NPs) embedded in nitrogen-doped reduced graphene oxide matrix (NRGO@Co). The NRGO scaffold with high porosity and surface area not only stabilizes the NPs but also greatly facilitates the accessibility and adsorption of substrates to the active sites. With the synergistic effect arising from the NRGO and Co NPs, the NRGO@Co hybrid catalyst exhibits enhanced catalytic activity for activation of peroxymonosulfate (PMS) to degrade organic pollutants in water. Furthermore, taking advantage of the favorable magnetic properties, the catalyst can be easily recycled and reused for at least 4 runs with negligible loss of activity. Coupled with systematic investigation in terms of influential factors, mineralization, and radicals identification, make the catalyst hold significant potential for application in remediation of organic pollutants in water.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions.

Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arisi...

متن کامل

Formation of Single‐Holed Cobalt/N‐Doped Carbon Hollow Particles with Enhanced Electrocatalytic Activity toward Oxygen Reduction Reaction in Alkaline Media

Design and construction of metal-organic framework (MOF) composite precursors have recently been considered as a promising strategy for the preparation of different structured metal/carbon-based functional materials. Here, an MOF composite-assisted strategy to synthesize single-holed cobalt/N-doped carbon hollow particles is reported. The yolk-shell polystyrene@zeolitic imidazolate framework-67...

متن کامل

Bio‐Inspired Leaf‐Mimicking Nanosheet/Nanotube Heterostructure as a Highly Efficient Oxygen Evolution Catalyst

Plant leaves represent a unique 2D/1D heterostructure for enhanced surface reaction and efficient mass transport. Inspired by plant leaves, a 2D/1D CoO x heterostructure is developed that is composed of ultrathin CoO x nanosheets further assembled into a nanotube structure. This bio-inspired architecture allows a highly active Co2+ electronic structure for an efficient oxygen evolution reaction...

متن کامل

N-Doped carbon spheres with hierarchical micropore-nanosheet networks for high performance supercapacitors.

N-doped carbon spheres with hierarchical micropore-nanosheet networks (HPSCSs) were facilely fabricated by a one-step carbonization and activation process of N containing polymer spheres by KOH. With the synergy effect of the multiple structures, HPSCSs exhibit a very high specific capacitance of 407.9 F g(-1) at 1 mV s(-1) (1.2 times higher than that of porous carbon spheres) and a robust cycl...

متن کامل

Efficient Determination of Butylated Hydroxyanisole Using an Electrochemical Sensor Based on Cobalt Oxide Nanoparticles Modified Electrode

A simple and reliable electrochemical sensor based on cobalt oxide nanoparticles modified glassy carbon electrode (GCE/CoOxNPs) for determination of butylated hydroxyanisole is presented here. The nanoparticles were fabricated by electrodepositing method. The modified electrode shows excellent catalytic activity toward butylated hydroxyanisole oxidation in pH 12.0 phosphate buffer solution (PBS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016